Biomaterial-Driven Immunomodulation: CellBiology-Based Strategies to Mitigate Severe Inflammation and Sepsis
Inflammation is an essential component of a wide variety of disease processes and oftentimes can increase the deleterious effects of a disease. Finding ways to modulate this essential immune process is the basis for many therapeutics under development and is a burgeoning area of research for both basic and translational immunology.
In addition to developing therapeutics for cellular and molecular targets, the use of biomaterials to modify innate and adaptive immune responses is an area that has recently sparked significant interest. In particular, immunomodulatory activity can be engineered into biomaterials to elicit heightened or dampened immune responses for use in vaccines, immune tolerance, or anti-inflammatory applications.
Importantly, the inherent physicochemical properties of the biomaterials play a significant role in determining the observed effects. Properties including composition, molecular weight, size, surface charge, and others affect interactions with immune cells (i.e., nano-bio interactions) and allow for differential biological responses such as activation or inhibition of inflammatory signaling pathways, surface molecule expression, and antigen presentation to be encoded.
Numerous opportunities to open new avenues of research to understand the ways in which immune cells interact with and integrate information from their environment may provide critical solutions needed to treat a variety of disorders and diseases where immune dysregulation is a key inciting event. However, to elicit predictable immune responses there is a great need for a thorough understanding of how the biomaterial properties can be tuned to harness a designed immunological outcome.
This review aims to systematically describe the biological effects of nanoparticle properties-separate from additional small molecule or biologic delivery-on modulating innate immune cell responses in the context of severe inflammation and sepsis. We propose that nanoparticles represent a potential polypharmacological strategy to simultaneously modify multiple aspects of dysregulated immune responses where single target therapies have fallen short for these applications.
This review intends to serve as a resource for immunology labs and other associated fields that would like to apply the growing field of rationally designed biomaterials into their work.
Description: A rapid test for detection of antibodies (IgG and IgM) for 2019-nCoV, the novel Coronavirus from the Wuhan strain. The test is easy to perform, takes 10 minutes to provide reliable results and is higly specific to the 2019-nCoV Coronavirus.
Description: A rapid test for detection of antibodies (IgG and IgM) for 2019-nCoV, the novel Coronavirus from the Wuhan strain. The test is easy to perform, takes 10 minutes to provide reliable results and is higly specific to the 2019-nCoV Coronavirus.
Description: An accurate, simple, fast (15 min) and inexpensive screening tool for the identification of protein putrefaction in the gastrointestinal tract. For research use only, not intended for diagnostic use. The Indican Reagent is corrosive. It is recommended to perform the test in a chemical fume hood. Wear gloves, goggles and protective clothing. Key Features: Convenient. Only need to pipette 2 mL urine into the ready reagent vial, mix and read the indican level from a color chart. Fast: 15 min. Method: Obermeyer (Improved). Samples: Urine. Species: Human. Procedure: Assay takes 15 min. Kit size: 20 tests.
NOVATest IgG/IgM Antibody Rapid Test Kit (NOVA Test)
Description: A rapid test for detection of antibodies (IgG and IgM) for 2019-nCoV, the novel Coronavirus from the Wuhan strain. The test is easy to perform, takes 10 minutes to provide reliable results and is higly specific to the 2019-nCoV Coronavirus.
AAVS1 Safe Harbor Targeting Vector 2.0 - All-Purpose Donor (AAVS1-SA-puro-MCS), Complete Kit with CAS601A-1 (Cas9 SmartNuclease AAVS1-gRNA Targeting Vector) and GE640PR-1 (Junction PCR Primer Mix to confirm AAVS1 integration site)
4D CellBiology: Adaptive optics lattice light-sheet imaging and AI powered big data processing of live stem cell-derived organoids
New methods in stem cell 3D organoid tissue culture, advanced imaging, and big data image analytics now allow tissue-scale 4D cell biology but currently available analytical pipelines are inadequate for handing and analyzing the resulting gigabytes and terabytes of high-content imaging data. We expressed fluorescent protein fusions of clathrin and dynamin2 at endogenous levels in genome- edited human embryonic stem cells, which were differentiated into intestinal epithelial organoids.
Lattice light-sheet imaging with adaptive optics (AO-LLSM) allowed us to image large volumes of these organoids (70 × 60 × 40 μm xyz) at 5.7 s/frame. We developed an open-source data analysis package termed pyLattice to process the resulting large (∼60 Gb) movie data sets and to track clathrin-mediated endocytosis (CME) events.
We then expressed fluorescent protein fusions of actin and tubulin in genome-edited induced human pluripotent stem cells, which were differentiated into human cortical organoids. Using the AO-LLSM mode on the new MOSAIC (Multimodal Optical Scope with Adaptive Imaging Correction) allowed us to image neuronal migration deep in the organoid. We augmented pyLattice with a deep learning module and used it to process the brain organoid data.
Common Sources of Inflammation and Their Impact on Hematopoietic Stem CellBiology
Purpose of review: Inflammatory signals have emerged as critical regulators of hematopoietic stem cell (HSC) function. Specifically, HSCs are highly responsive to acute changes in systemic inflammation and this influences not only their division rate but also their lineage fate. Identifying how inflammation regulates HSCs and shapes the blood system is crucial to understanding the mechanisms underpinning these processes, as well as potential links between them.
Recent findings: A widening array of physiologic and pathologic processes involving heightened inflammation are now recognized to critically affect HSC biology and blood lineage production. Conditions documented to affect HSC function include not only acute and chronic infections but also autoinflammatory conditions, irradiation injury, and physiologic states such as aging and obesity.
Summary: Recognizing the contexts during which inflammation affects primitive hematopoiesis is essential to improving our understanding of HSC biology and informing new therapeutic interventions against maladaptive hematopoiesis that occurs during inflammatory diseases, infections, and cancer-related disorders.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: This cell lysate is prepared from human mcf-7 using Boster's RIPA Lysis Buffer (AR0105) using a standard whole cell lysate protocol. The concentration was determined using the BCA assay process and then diluted using Dithiothreitol (DTT) and a reducing SDS sample loading buffer, heated for 5 minutes at 100˚C.
Description: MCF 7 (Human breast Adenocarcinima) cell membrane protein lysate was prepared by isolating the membrane protein from whole tissue homogenates using a proprietary technique. The MCF 7 (Human breast Adenocarcinima) cell was frozen in liquid nitrogen immediately after excision and then stored at -70ºC. The membrane protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the isolated MCF 7 (Human breast Adenocarcinima) cell membrane protein pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The isolated MCF 7 (Human breast Adenocarcinima) cell membrane protein is then Western analyzed by either GAPDH or β-actin antibody to confirm there is no signal or very weak signal.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various proteomics studies in both normal and pathological cases. It is an excellent control and suitable for educational purposes. This product is prepared from whole tissue homogenates and has undergone SDS-PAGE quality control analysis. The protein is stored in a buffer with protease inhibitor cocktail fo prevent degradation.
Membrane Protein from Human Tumor Cell Line: MCF 7
Description: Can be used for various proteomics studies in both normal and pathological cases. It is an excellent control and suitable for educational purposes. This product is prepared from whole tissue homogenates and has undergone SDS-PAGE quality control analysis. The protein is stored in a buffer with protease inhibitor cocktail fo prevent degradation.
Paraffin Tissue Section - Human Tumor Cell Line: MCF-7
Description: Our tissue products are produced by strictly following the IRB ethical standards and procedures and from highest quality tissues. Immediately after collection the tissues are placed in liquid nitrogen and examined by certified pathologists. The thickness of each individual section is ~5um. They are Hematoxylin and Eosin stained and quality tested by immunostaining with anti-beta-actin antibodies. Our tissue products are suitable for various studies on cellular level (RNA localization, Protein expression, etc.) on both normal and pathological cases. It is also an excellent control and educational tool.
Description: Can be used for various studies in the realm of gene expression and regulation, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: The NFAT Reporter - Jurkat Cell Line contains a firefly luciferase gene under the control of the_x000D_NFAT response element stably integrated into Jurkat cells. This cell line has been validated for_x000D_response to thapsigargin, ionomycin, and phorbol 12-myristate 13-acetate (PMA). It is useful as_x000D_a control cell line for other NFAT reporter cell lines expressing various immune checkpoint_x000D_receptors.
Description: The GAL4 Reporter (Luc) - HEK293 Cell Line contains a firefly luciferase gene under the control of a multimerized GAL4 upstream activation sequence (UAS) stably integrated into HEK293 cells. The cell line does not contain any exogenous activators of the GAL4 reporter and can be used alongside BPS Cat. #60655 as a control.
Description: The STAT5 Reporter (Luc)-Ba/F3 cell line is designed for monitoring STAT5 signal transduction pathways. It contains a firefly luciferase gene driven by the STAT5 response element located upstream of the minimal TATA promoter. After activation by cytokines or growth factors, endogenous STAT5 binds to the DNA response elements, inducing transcription of the luciferase reporter gene.
STAT3 Reporter (Luc) - HEK293 Cell line (Puromycin)
Description: The STAT3 Reporter (Luc)-HEK293 cell line is designed for monitoring STAT3 signal transduction pathway. It contains a firefly luciferase gene driven by STAT3 response elements located upstream of the minimal TATA promoter. After activation by cytokines and growth factors, endogenous STAT3 binds to the DNA response elements, inducing transcription of the luciferase reporter gene.
Description: The Interferon Regulatory Factor (IRF) reporter (Luc)-THP-1 cell line is designed to study the activation and signaling of Cytosolic DNA Sensors (CDS) in human monocytic cell line THP-1. It contains a firefly luciferase gene driven by multimerized ISRE (Interferon Stimulated Response Element) located upstream of the minimal TATA promoter. _x000D_The cGAS-STING pathway acts to detect cytosolic DNA and induce an immune response. Briefly, upon binding DNA, the protein cGAS (cyclic GMP-AMP Synthase) triggers reaction of GTP and ATP to form cGAMP. cGAMP binds to STING (Stimulator of Interferon Genes) which triggers phosphorylation of IRF3 via TBK1. IRF3 can then bind to interferon-stimulated responsive elements (ISRE) in the nucleus and leads to IFN-α/β production. The IRF reporter (Luc)-THP-1 cell line is highly responsive to STING and CDS ligands.
Description: NF-B luciferase reporter construct is stably integrated into the genome of HCT-116 cells. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene._x000D_The NF-κB-luciferase/HCT-116 cell line is suitable for monitoring the activity of NF-κB signaling in response to stimulants such as the cytokines TNF and IL-1β, pathogen-associated molecular pattern (PAMP) (i.e. flagellin) or endogenous damage-associated molecular pattern (DAMP) molecules (i.e. NOD1 ligand) (see application references). It is also suitable for establishing cell-based screens for inhibitors that target specific NF-κB stimulating molecules. This cell line can be further modified to allow investigation of downstream NF-κB activities as a result of targeted genetic mutation(s).
Foxp3 Reporter (Luc) - Jurkat Recombinant Cell Line
Description: Human Foxp3 luciferase reporter construct is stably integrated into the genome of Jurkat T- cells. The firefly luciferase gene is controlled by a human Foxp3 promoter and an enhancer-like conserved noncoding sequence upstream of the Foxp3 promoter.
Description: The NF-κB reporter (Luc) HEK293 cell line is designed to monitor nuclear factor Kappa B (NF-κB) activity. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or agonists of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene. The cell line has been functionally validated in response to human TNF-α, IL-1β, and IL-17.
Description: The 293AAV Cell Line is derived from the parental 293 cells but selected for attributes that increase AAV production, including firmer attachment and larger surface area.
Description: The 293AD Cell Line is derived from the parental 293 cells but selected for attributes that increase adenovirus production, including firmer attachment and larger surface area.
Description: The 293LTV Cell Line is derived from the parental 293 cells but selected for attributes that increase lentiviral production, including fimrer attachment and larger surface area.
Description: The 293RTV Cell Line is derived from the parental 293 cells but selected for attributes that increase retroviral production, including fimrer attachment and larger surface area.
Description: The NF-κB reporter (Luc)-NIH/3T3 cell line is designed for monitoring nuclear factor Kappa B (NF-κB) signal transduction pathways. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or stimulants of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene.
Description: The NF-κB reporter (Luc)-THP-1 cell line is designed for monitoring nuclear factor Kappa B (NF-κB) signal transduction pathways. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or stimulants of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene.
Description: The STAT5 Reporter (Luc)-U937 cell line is designed for monitoring STAT5 signal transduction pathway in the U937 cell line. It contains a firefly luciferase gene driven by the STAT5 response element located upstream of the minimal TATA promoter. After activation by GM-CSF, endogenous STAT5 binds to the DNA response elements, inducing transcription of the luciferase reporter gene.
Description: The NF-κB reporter (Luc)-Raw 264.7 cell line is designed for monitoring nuclear factor Kappa B (NF-κB) signal transduction pathways. It contains a firefly luciferase gene driven by four copies of the NF-κB response element located upstream of the minimal TATA promoter. After activation by pro-inflammatory cytokines or stimulants of lymphokine receptors, endogenous NF-κB transcription factors bind to the DNA response elements, inducing transcription of the luciferase reporter gene.
Description: PAI-1 Reporter (Luc)-Mv1 Lu cell line is designed for monitoring transforming growth factor β (TGF-β)-induced plasminogen activator inhibitor-1 (PAI-1) expression. Transforming growth factor-β (TGF-β) is a potent regulator of cellular differentiation, proliferation, migration, and protein expression._x000D__x000D_PAI-1 Reporter (Luc) -Mv1 Lu cell line contains a firefly luciferase gene under the control of PAI-1 responsive elements stably integrated into Mv1 Lu (NBL-7) cells, showing TGF-β pathway response. This cell line is validated for the TGF-β response to the induction of PAI-1 gene expression through luciferase activity. _x000D_
Description: An NF-κB luciferase reporter construct is stably integrated into the genome of CHO-K1 cells. The firefly luciferase gene is controlled by the NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene._x000D_The NF-κB-luciferase / CHO-K1 cell line is suitable for monitoring the activity of NF-κB transcription factor through luminescence readout.). This cell line responds to human cytokine IL-1β, responds moderately to human TNF, and does not respond to human IFN-λ (2 µg/ml). Reducing the amount of serum during incubation period may increase the sensitivity to cytokines. Since CHO-K1 cells do not express endogenous human proteins, this cell line provides an excellent platform to enable exogenous expression of a protein of interest to study its downstream effect on NF-κB signaling.
Description: NF-κB luciferase reporter construct is stably integrated into the genome of A549 cells. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene.
NF-κB-Luciferase Reporter (Luc) - Jurkat Cell Line
Description: NF-κB luciferase reporter construct is stably integrated into the genome of Jurkat T- cells. The firefly luciferase gene is controlled by 4 copies of NF-kB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene.
Description: Recombinant HEK293 cells expressing firefly luciferase gene under the control of cAMP response element (CRE) with constitutive expression of human GLP-1R (Glucagon-like peptide 1 receptor; accession number BC113493)._x000D_GLP-1R, a member of the class B family of G protein-coupled receptors (GPCRs) primarily found in pancreatic β cells, is activated by a peptide hormone, glucagon-like peptide 1 (GLP-1) that is secreted from intestinal L-cells after nutrient ingestion. GLP-1R plays an important role in controlling blood sugar level by enhancing glucose-stimulated insulin secretion, so various research efforts have focused on the regulation of the GLP-1R mediated signaling pathway as a therapeutic approach to diabetes.
Myc Reporter (Luc) - HCT116 Cell Line (Myc Signaling Pathway)
Description: The Myc Reporter - HCT116 cell line contains the firefly luciferase gene under the control of Myc responsive elements stably integrated into HCT116 cells, a human colon cancer cell line. HCT116 contains a mutated beta-catenin which leads to the accumulation of β-catenin and constitutive activation of downstream Myc that induces the expression of Myc luciferase reporter. The cell line is validated for the inhibition of the expression of Myc luciferase reporter.
GITR / NF-κB-Luciferase Reporter (Luc) - Jurkat Cell Line
Description: This cell line expresses a surface human GITR (glucocorticoid-induced TNFR family related gene; TNFRSF18; CD357) and an NF-κB luciferase reporter construct that are stably integrated into the genome of Jurkat T-cells. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by stimulants, endogenous NF-κB transcription factors bind to the DNA response elements to induce transcription of the luciferase gene. The cells have been validated using purified human GITRL and anti-GITR neutralizing antibody.
CD40/NF-κB Reporter (Luc) - HEK293 Stable Cell Line
Description: Recombinant HEK293 cell line expressing full length human CD40 (Tumor necrosis factor receptor superfamily member 5; TNFRSF5). Expression is confirmed by real-time qPCR and Western Blot. This NF-κB luciferase reporter construct is stably integrated into the genome. The firefly luciferase gene is controlled by 4 copies of NF-κB response element located upstream of the TATA promoter. Following activation by human CD40 ligand, NF-κB transcription factor binds to the DNA response elements to induce transcription of the luciferase gene. _x000D_
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-E cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-A cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-GP cells contain the gag and pol genes required for retroviral packaging; an expression vector is co-transfected with a VSVG envelope vector.